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ABSTRACT: Cellular rubbers are elastomeric materials containing pores which can undergo large volumetric
deformations. This contribution presents an isotropic, hyperelastic material model for cellular rubbers based on
the approach of Danielsson, Parks, & Boyce (2004). For model validation and parameter fitting, experimental
characterization were carried out for a foamed elastomers based on a natural rubber compound. Moreover, a
feasible procedure of parameter fitting avoiding lateral strain measurement is outlined and tested. Furthermore,
a finite element model of the microstructure of the cellular rubber is reconstructed from a computer tomography
scan.

1 INTRODUCTION

Rubber products containing gas-filled cells or hol-
low receptacles are called cellular rubber. These
two-phase materials provide a lightweight design,
low reaction forces and the ability to undergo large
volumetric deformations. Thus, they are widely-used
for instance in seals and weather stripping applica-
tions. In order to simulate the mechanical behaviour
of cellular materials, there are in general two ap-
proaches. On the one hand, one can consider the
actual geometry of the microstructure and model both
phases separately. This micromechanical approach
is very intuitive and gives an insight to the local
deformation but results in huge computational costs.
It is discussed in Section 5.

On the other hand, the microstructure can also
be homogenized. This approach leads to continuous
material properties represented by a single material
model. In this case, only the enveloping geometry
of the cellular product has to be considered, but
a higher modelling effort is required to predict a
realistic behaviour. This approach is referred to as
macromechanical and is outlined in Section 4. The
presented results are based on Ricker (2018).

Various approaches have been made in order to
model foamed elastomers, cf. e.g. Blatz & Ko (1962),
Hill (1978), Ogden (1972), Diebels (2000), Jemiolo
& Turteltaub (2000), Danielsson, Parks, & Boyce
(2004), Koprowski-Theiß (2011), Lewis & Ran-
gaswamy (2012), Wang, Hu, & Zhao (2017), Mat-
suda, Oketani, Kimura, & Nomoto (2017) and many
more.

2 CLASSIFICATIONS OF CELLULAR RUBBER
AND ITS MICROSTRUCTURE

The ASTM Committee E02 on Terminology (2005)
distinguishes between three different types of cellular
rubber based on the production method and cell type:

Latex foam rubber is made by stirring mechani-
cally gas into a liquid latex compound before it is
subsequently cured. Alternatively, a blowing agent
can be incorporated into a solid rubber compound
that decomposes during the vulcanization process
and chemically produces gas bubbles. These mate-
rials are either referred to as sponge rubber in case
of predominately open, interconnected cells or as
expanded rubber in case of predominately closed,
non-interconnected cells. This contribution focuses
on the latter one.
Furthermore, additional parameters are required to



Figure 1: Representation of the volume constant deformation of a hollow sphere (K̃ to K) with incompressible matrix material by
macromechanical stretches λX and λY

describe the microstructure of cellular materials, for
example the pore distribution, the average pore size,
the pore ellipticity and many more. Here, only one
parameter, the porosity, is considered:

The porosity is defined as the ratio of pore volume

Ṽp to the total volume of the cellular material Ṽ

φ =
Ṽp

Ṽp + Ṽm
(1)

where Vm is the volume of the matrix material. The
tildes denote quantities in the undeformed, reference
state. An alternative formulation can be given via the
mass densities of the foam ρ̃f and pure matrix mate-
rial ρ̃m. Assuming the mass density of the pore fluid
ρ̃p is much smaller compared to the matrix density the
porosity can be approximated by

φ ≈ 1−
ρ̃f
ρ̃m

if ρ̃m ≫ ρ̃p. (2)

3 MACROMECHANICAL MATERIAL MODEL

The common approach to model rubber-like materials
is based on a split of the deformation into an isochoric
and a volumetric part as proposed by Flory (1961).
This leads to non-physical behaviour in case of highly
compressible materials as shown by Ehlers & Eip-
per (1998). Therefore, more complex material mod-
els with coupled isochoric-volumetric properties have
been developed. For example Hill (1978) presented
a phenomenological strain energy function in terms
of principal stretches for foamed rubber based on the
works of Blatz & Ko (1962) and Ogden (1972). This
hyperelastic model is implemented in many commer-
cial finite element programs. In contrast, Danielsson,
Parks, & Boyce (2004) derived a strain energy func-
tion in terms of the principal invariants of the left
Cauchy-Green tensor from the kinematics of an ideal-
ized microstructure. This idea is the basis for the ma-
terial model used within this contribution. The basic
assumption of Danielsson et al. is that every material
point within the cellular material behaves like a hol-
low sphere with perfectly incompressible outer layer

representing a single pore. The ratio of the inner di-
ameter A to the outer diameter B is defined by the
porosity φ = (A/B)3. The behaviour of the matrix
material is defined by the hyperelastic strain energy
function

ˆ̃ρψ̂ = ˆ̃ρψ̂(Î1, Î2) (3)

in dependency of the local principle invariants Î1
and Î2. The superscriptˆdenotes the micromechani-

cal quantities. Î1 and Î2 can be derived with respect to
the macroscopic principal stretches λA and an admis-
sible radial deformation field xA for details we refer
to Danielsson, Parks, & Boyce (2004). Under an ex-
ternal load the hollow sphere deforms to a hollow el-
lipsoid where the semi-axes are defined by the macro-
scopic principal stretches λA. Considering an admis-
sible radial deformation field xA on the hollow sphere
the micromechanical kinematics are uniquely defined
in terms of the macromechanical stretches, see Fig. 1.
In order to obtain a macromechanical material model
from this micromechanical kinematics, a local strain
energy density is assigned to the hollow sphere. Inte-
grating the local strain energy density, Eq. (3), of the
micromechanical kinematics over the sphere volume
yields the total strain energy applied on the sphere.
Hence, an average, homogenized strain energy func-
tion is obtained by

ρ̃ψ(I1, I2, J, φ, ...) =
1

Ṽ

∫

Gm

ˆ̃ρψ̂
(

Î1, Î2, ...
)

dṼ . (4)

Danielsson et al. demonstrated the procedure using
the Neo-Hooke local strain energy function, which
leads to a compressible Neo-Hooke model. Without
difficulties the approach can be extended to a com-
pressible Mooney-Rivlin and yields

ρ̃ψ = (c10 (α1I1 − 3 + c01(α2I2 − 3)) · (1− φ) (5)

as macroscopic strain energy function with

α1 = 2−
1

J
−

φ+ 2(J − 1)

(1 + (J − 1)/φ)1/3J2/3
(6)

and

α2 = −1 +
2

J
−

(

J − 1 + φ

Jφ

)1/3(
φ+ 1

J
− 1

)

. (7)



The correctness of this formula can be proven by ap-
plying porosity φ = 0 and J = 1 which recovers the
incompressible Mooney-Rivlin strain energy func-
tion. A similar approach was derived by Lewis & Ran-
gaswamy (2012). However, Lewis & Rangaswamy
(2012) applied the approach only to the isochoric part
of the model where J = 1 and subsequently α1 =
α2 = 1. In this case, the compressible properties fi-
nally get lost.
In case of more general local strain energy functions
with higher order terms, e.g. Yeoh-model, the inte-
gral Eq. (4) cannot be solved analytically anymore. In
this work the local strain energy function proposed by
James, Green, & Simpson G. M. (1975) is used:

ˆ̃ρψ̂ =c10

(

Î1 − 3
)

+ c01

(

Î2 − 3
)

+ c20

(

Î1 − 3
)2

+ c30

(

Î1 − 3
)3

+ c11

(

Î1 − 3
)

·
(

Î2 − 3
)

.

(8)

Thus, numerical integration methods have to be used.
To minimize the numerical effort, the integration
scheme is applied to the stresses as proposed by
Danielsson:

T̃ =
2

Ṽ
·
∂

∂C

∫

Gm

∂ ˆ̃ρφ̂

∂C
dṼ . (9)

The integral is split into a radial and a spherical part.
The radial part is treated by a Gauss-Legendre quadra-
ture with four integration points. Whereas, the spher-
ical part is computed by a Lebedev quadrature, see
Lebedev (1976), or uniform distributed integration
points given by the vertices of the platonic solids. The
distribution of integration points can be selected with
symmetry in all three coordinate planes in an appro-
priate coordinate system. In order to prove the accu-
racy of the spherical integration schemes, the depen-
dence of the quadrature result on the position of inte-
gration points can be investigated, see Ricker (2018).
The coordinate system of the integration points is
rotated relatively to the co-ordinate system of the
sphere. Consequently, a Lebedev integration scheme
with 26 integration points should be used. Since the
symmetry to the coordinate planes applies to the de-
formation of a sphere to an ellipsoid, too, the coor-
dinate systems are chosen to coincide. This leads to
seven effective integration points. In conjunction with
four radial points, 28 overall integration points have to
be evaluated. The resulting material model is exem-
plified in Fig. 2 showing the stress response and the
lateral strain in case of uniaxial tension with varying
porosities.

Figure 2: Material model response for varying porosity φ

4 EXPERIMENTS AND PARAMETER FITTING

There are some experimental challenges concerning
the characterization of the mechanical properties of
cellular rubber. For instance, the cellular structure
tends to tear at the clamps particularly with regard to
biaxial and planar tension tests. Furthermore, a testing
machine with lateral strain measurements is required
since the lateral stretches cannot be derived from the
incompressibility constraint as usually done for pore-
free rubber. Otherwise, the deformation is not entirely
captured leading to unknown independent variables
within the parameter fitting procedure. Therefore, a
step-wise parameter fitting procedure is presented.
The basic idea of the proposed parameter fitting pro-
cedure is the fact that the aforementioned material
model is derived from the kinematics of an idealized
pore. Here, an incompressible strain energy function
is assigned to the matrix material independently of the
actual pore size. In other words, the porosity is just a
geometrical quantity that does not influence the re-
maining material parameters cij of the strain energy
function. Therefore, one can produce pore-free test
specimen, fit the parameters cij assuming incompress-
ibility and porosity φ = 0 and finally add the porosity
to obtain a full set of parameters for the porous ma-
terial. Thus, no mechanical tests on the cellular mate-
rial are needed. The outlined procedure is illustrated
in Fig. 3 using a carbon black filled, sulphur cured
natural rubber. The resulting parameters [in MPa] are
c10 = 0.3967, c01 = 0.0768, c11 = 0.0041, c20 = 0 and
c30 = 0.0204. The porosity φ = 0.465 is determined
by density measurements of the pore-free material
and the foam material.

In order to evaluate the applicability of the ma-
terial model and the parameter fitting procedure, a



Figure 3: Resulting parameter fit for an uniaxial tension test of
pore-free material and corresponding validation test for uniaxial
tension and compression of the foamed elastomer. The stabilized
(5th) cycles of a multi-hysteresis tests are used for identification
and validation. Inelastic effects are neglected by cutting the ma-
terial response at low strains.

Figure 4: Comparison of compression test of a car door sealing
and FEM results

compression test is carried out on a car door seal,
see Fig. 4. This test measures the vertical displace-
ment of the piston versus the vertical reaction force
and is used to investigate the closing behaviour of the
car door. The experiment is simulated using the FE-
software MSC.Marc. The results are shown in Figs. 4
and 5. Therein, the predicted deformation is com-
pared to a photography of the deformed seal show-
ing a good agreement. The experimental and simu-
lated force vs. displacement curves show rather good
agreement as well. Especially, since the pore distri-
bution and inelastic effects are not yet accounted for.
For instance, due to production processes the outer
hull of the seal contains less pores, such that adjust-
ments have to be made in setting up the FE model
with varying porosities.

5 MICROMECHANICAL SIMULATIONS

Instead of a macromechanical modelling approach,
see Section 3, a direct modelling via the geometry
of the foamed elastomer can be chosen as well. Due
to numerical limitations only small volumes can be

Figure 5: Comparison of force vs. displacement of test and sim-
ulation results of a compressed car door sealing

Figure 6: Computed tomographic layer of a cylindrical specimen
of the foamed material (natural rubber): The recording consists
of 600 vx × 600 vx and captures one section of 5.5 mm × 5.5
mm

considered. Via computer tomography (CT) measure-
ment the pore structure is analysed for a cylindrical
probe, see Fig. 6. A 0.9 x 0.9 mm cube of the ge-
ometry is reconstructed from the 2D images using
the Software MeVisLab (Version 3.0.1) and imported
in MSC.Marc. Due to image noise and the blurred
transitions between phases clear boundaries cannot be
found without difficulties. The final geometry output
therefore depends on the segmentation algorithm as
well as the pre- and post-processing of the CT im-
ages. For this work, the segmentation parameters are
chosen such that the ratio from the segmented volume
to the total volume of the cube is approximately 1−φ.
A fully representative sub-cell of the foam can not be
easily identified due to the inhomogeneous pore dis-
tribution in the probe. For illustrative purposes, only
one sub-cell is modelled and investigated.
Using the parameters for the pore-free material as

(quasi-)incompressible matrix material, see Section4,
an uniaxial tension test is simulated, see Fig. 7.

In MSC.Marc incompressible materials are mod-
elled quasi-incompressible. The strain energy func-



tion is extended by a volumetric part

ψ̃vol =
9

2
K

(

J1/3 − 1
)2

. (10)

The bulk modulus K is set to 20GPa and a Hermann
element formulation is used (MSC Software Cor-
poration 2017). As element type linear 4-node or
10-node elements can be used. Deciding on one of
the element types is a trade-off between the compu-
tational effort, the local accuracy and stability. The
use of 4-node tetrahedral elements leads to similar
stress-strain responses as the 10-node elements, and
reduces the number of nodes from 401216 to 58740.
Due to high deformations within the foam structure
the application of the 10-node element type leads
to numerical instabilities, too. Therefore, for the
presented investigations only 4-node linear elements
are used.

The boundary conditions can be set in different
variants, especially for the sides of the cube, e.g.
free deformable, symmetrical or periodical. Here,
an alternative is used. The boundary conditions are
chosen such that the enveloping geometry of the
material section always remains a cube with flat
side surfaces. This means, all nodes on a surface
always experience the same shift in the direction of
the surface normals. In contrast to the other types
of boundary conditions unloaded side walls remain
plane. Therefore, a clear determination of trans-
verse strain is possible. In comparison to periodic
boundary conditions it allows also a subsequent
extension to several material sections for each defor-
mation mode, but also involves additional restrictions.

For validation of the lateral material behaviour the
uniaxial tension test is filmed with a high-speed cam-
era. Afterwards, digital image correlation is used to
extract the axial and the lateral stretch. This experi-
ment is carried out on the foamed and the correspond-
ing pore-free material.
Due to the inhomogeneous pore distribution uniaxial
tension in different main directions lead to different
stress responses if the sub-cell is not representative.
Here, the variation are below 1% with stresses of 0.91
MPa (z-direction), 0.92 MPa (y-direction) and 0.95
MPa (x-direction) at 100% elongation. The simula-
tion results reveal a softer response of the microme-
chanical modelling in comparison with the macrome-
chanical approach, see Fig. 8.

The deviations are caused by a lower stiffness at
strains below λ = 1.4. In comparison with the ex-
periment the micromechanical approach underesti-
mates the real behaviour whereas the macromechani-
cal approach slightly overestimates it. Clearly, within
the micromechanical sub-cell besides uniaxial tension
further loading modes are eminent. The ideal uniaxial
mode is assumed for the macro model.
Comparing the lateral behaviour, the micromechan-

Figure 7: Uniaxial tension test on a sub-cell of the foamed elas-
tomer

Figure 8: Comparison of the stress-strain behaviour between
the micromechanical and the macromechanical modelling (1st
Piola-Kirchhoff stress)

ical model predicts the experiment very well, see
Fig. 9. At higher strains the macromechanical mod-
elling approach diverges from the experiments. The
deviations result from various reasons. The macrome-
chanical model does not describe the full micro-
structure of the foam. Within the micromechanical ap-
proach fine, reinforcing structures like cell walls are
overlooked by the segmentation. Light microscopic
studies reveal that the thickness of overlooked cell
walls is in the same order as big filler agglomerates.
Such disorders evoke a local stress concentration. In
both approaches they are neglected. In addition, we
assume the pore-free material totally equals the ma-
trix material within the foam. Due to the production
process a small amount of free volume can occur lead-
ing to a porosity φ 6= 0. Furhtermore, inner gas pres-
sure within the pores has a small stiffening effect.



Figure 9: Comparison of the transverse contraction behaviour
between the micromechanical (tension in x-direction) and the
macro mechanic modelling. Due to the inhomogeneous pore dis-
tribution for the micromechanical simulation the two lateral di-
rections are shown.

6 CONCLUSIONS

In principle, two approaches are conceivable for
the modelling of cellular materials. The macrome-
chanical modelling considers only the enveloping
geometry of a component or test specimen. This
allows an efficient implementation, but does not
allow any consideration of the real pore structure.
In contrast, the micromechanical modelling captures
the local structures and their detailed deformations.
For the macromechanical modelling the approach of
Danielsson, Parks, & Boyce (2004) is extended to
higher terms. The simple approach is based on the
idealized idea of a pore as a hollow sphere, which is
assigned an ideal incompressible, hyperelastic mate-
rial model. Due to the higher order terms numerical
integrations schemes are used to derived the strain
energy function of the foamed material.

The efficient parameter identification via pore-free
materials and density measurements of foamed and
pore-fore material makes this modelling approach
usable for industrial application like for simulation of
car door seals. Although, the prediction of the lateral
behaviour using the macromechanical approach
lacks in accuracy, it can offer fast first results. By
adjusting the porosity parameter for certain areas
of a component, one can account for varying pore
distributions within it. Micromechanical modelling
offers a more accurate prediction and insights in the
local loadings in the cell structure, but results also
in high effort for measurement via CT, geometrical
modelling and high computational costs. In principle,
the micromechanical model reveals that a more
accurate pore structure and higher non-linear effects
stemming from the high local deformations of the
matrix material of the foam has to be considered in a
macromechanical approach.

Future works include the extension to more sophis-
ticated models for elastomers, cf. Plagge, Ricker, &
Klüppel (2019).
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