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0. Abstract

A micro-mechanical concept of hyperelasticity of reinforced rubbers is presented that
combines a generalized non-Gausian tube model of rubber elasticity with a damage
model of stress-induced filler cluster breakdown. The functional integral formulation
of rubber elasticity is reviewed, briefly, and compared to the classical Mooney-Rivlin-
and Inverse-Langevin approaches of rubber elasticity. On this basis, hydrodynamic
reinforcement by rigid, self-sinilar filler clusters is considered that allows for a quanti-
tative description of stress softening by means of a strain or pre-strain dependent
hydrodynamic amplification factor, respectively. Thereby, the high hysteresis of
reinforced rubber is referred to a irreversible break down of filler clusters during the
first deformation cycle. It is shown that the developed concept is in fair agreement
with uniaxial stress-strain data of unfilled NR-samples of variable cross-link density
and carbon black filled E-SBR- and EPDM-samples.

1. Introduction

The micro-mechanical modellization of quasi-static stress-strain properties of reinfor-
ced elastomers involves different influences and mechanisms that have been
discussed by a varity of authors, but in most cases only on a qualitative level. Beside
the action of the entropy elastic polymer network that is quite well understood on a
molecular-statistical basis [1,2], the impact of filler particles on stress-strain proper-
ties is of high importance, but so far the micro-mechanical effects of the filler are not
totally understood [3,4]. On the one hand side the addition of hard filler particles
leads to a stiffening of the rubber matrix that can be described by a hydrodynamic
strain amplification factor [5-7]. On the other hand side the constraints introduced
into the system by filler-polymer bondings result in a decreased network entropy
and hence, the free energy that equals the negative entropy times the temperature
increases linear with the effective number of network junctions [8,9]. A further effect
can be obtained from the formation of filler clusters or a filler network due to strong
attractive filler-filler bondings [3,4,6-10].
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A complication for the modellization of reinforced rubbers is the pronounced stress
softening during quasi-static deformations that is also termed Mullins effect due to
the extensive measurements carried out by Mullins [11-13]. Dependent on the histo-
ry of straining, e.g. the extent of previous stretching, the rubber material undergoes
an almost permanent change that alters the elastic properties and increases hyste-
resis, drastically. Most of the softening occurs in the first deformation and after a few
deformation cycles the rubber approaches a steady state with a constant stress-
strain behavior. The softening is usually only present at deformations smaller than
the previous maximum. An example of stress softening is shown in Fig. 1, where the
maximum strain is increased, successively, from one uniaxial stretching cycle to the
next.
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Fig. 1. Quasi-static stress-strain cycles with successively increasing maximum strain
for E-SBR-samples filled with 80 phr N 339.

The softening has been attributed to breakdown or slippage [14-17] and dis-
entanglements [18] of bonds between filler and rubber, while other authors assu-
med that a strain-induced crystallization-decrystallization [19,20] or a re-
arrangement of network chain junctions in filled systems [13] is responsible for the
large hysteresis. A quantitative description of stress-induced breakdown or separati-
on of network chains from the filler surface is given in Ref. [15] where a complete
macroscopic constitutive theory is derived on the basis of statistical mechanics.
However, this kind of interpretation of stress softening ignores the important experi-
mental result of Haarwood et al. [19,20], who showed by a simple mastering proce-
dure that stress softening is related to hydrodynamic strain amplification due to the
presence of the filler. A plot of stress in second extension vs. ratio between strain
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and pre-strain of natural rubber filled with a varity of carbon blacks yields a single
master curve [13,19].

It's the aim of this paper to present a quantitative molecular-statistical model of hy-
perelasticity of filler reinforced rubbers that considers stress softening as a result of
strain amplification by rigid filler clusters of variable size. In the first part an advan-
ced concept of rubber elasticity is considered that combines the Edwards-Vilgis ap-
proach of finite network extensibility with a topological constraint contribution in a
generalized non-Gaussian tube-model for unfilled rubbers. In the second part of the
paper we will develop a micro-mechanical picture of filler cluster breakdown during
guasi-static straining. It yields a damage model for the description of stress sof-
tening by means of a hydrodynamical amplification factor that depends on the
applied strain during the first deformation of the virgin sample or maximum pre-strain
in the following cycles, respectively. In the third part we will present experimental
results on filled and unfilled samples. In particular, we will show how the parameters
of the model can be estimated by a fitting procedure for the pre-strained filled
samples.

2. A generalized tube model of rubber elasticity

The classical concepts of rubber elasticity consider so called phantom networks of
freely fluctuating chains that are not influenced by any constraining potential appart
from the cross-links [1,2]. This is a rough approximation, because in typical elasto-
mer networks the chains cannot move freely due to the large degree of chain inter-
penetration. It restricts the chain fluctuations by packing effects that result from the
inability of the chains to pass through its neighbours. The topological constraints on
a single chain (packing effects) can be described by a tube model, i.e. a harmonic
potential that forces the chain to remain in a virtuel tube around its mean position. In
the case of strong topological constraints, relevant for highly molecular rubbers, the
elastic free energy density can be expressed as [1]:

3 0 3 0
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where A, is the strain ratio in direction of the main axis system, G¢is the elastic mo-
dulus that corresponds to the crosslink constraints and Ge corresponds to the topo-
logical tube constraints:
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Here, v is the chain density, vs is the density of statistical segments, Is is the length
of statistical segments, <Ro>> is the average end-to-end distance of chains in the
underformed state, do is the tube radius (mean fluctuation radius of chain seg-
ments), kg is the Boltzmann constant and T is temperature.

Equ. (1) with the two elastic moduli Gc and Ge is closely related to the semi-
empirical Mooney-Rivlin equation with constants C1 and Ca:
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It relates the elastic energy to the first and second deformation invariants, i.e. the
bracket terms of Equ. (4). Obviously, Equ. (1) does not envolve the second invariant.
This is a direct consequence of a non-affine tube deformation law that leads to Equ.
(1). The modified assumption of affine tube deformations reproduces the Mooney-
Rivlin Equ. (4). This makes clear that the a-priori postulate of affine deformations on
all length scales as applied in continuum mechanics, e.g. the Mooney-Rivlin theory,
may not be fulfilled in molecular-statistical approaches of rubber elasticity.

So far, all considerations are valid in the Gaussian limit of infinite long chains. For
that reason no singularity appears in the elastic free energy density Equ. (1) that
could reflect the finite extensibility of real polymer networks. A singularity can be
obtained if the inverse Langevin approximation is used instead of the Gaussian dis-
tribution function for the end-to-end distance of network chains [21]. Thereby, it is
sufficient to consider the modifications of the cross-link term W¢ in Equ. (1), because
the topological constraint term We goes to zero at large strains (We~ku'1), where the
finite extensibility becomes significant [22-24]. This argument is confirmed by recent
molecular-statistical investigations of tube like network models based on non-
Gaussian network chains, which show that the action of tube constraints becomes
weaker in the case of predominance of finite chain extensibility [25,26]. The simplest
way to obtain a singularity for the free energy is the modification of Equ. (1) as pro-
posed by Edwards and Vilgis [2]:
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Here, Te is the Langley trapping factor [27] and ne is the segment number of chains
between successive entanglements. The singularity of W¢ is found for ne/Te=2. xuz -
3, i.e. if the chains between successive trapped entanglements are fully stretched
out. This makes clear that the approach in Equ. (5) characterizes trapped entangle-
ments as some kind of physical cross-links (slip-links) that dominate the extensibility
of the network due to the larger number of entanglements as compared to chemical
cross-links. We note, that this gives a less pronounced upturn of stress-strain curves
as compared to the classical inverse Langevin approach, which can be related to the
more flexible response of trapped entanglements as compared to chemical cross-
links.

The final expression for the elastic free energy that considers finite extensibility toge-
ther with tube constraints is found from a combination of Equ. (5) with the second
term of Equ. (1):

In the limit ne &> o« the Gaussian formulation of infinite long chains Equ. (1) is reco-
vered. From Equ. (6) the engeneering stress oo, that relates the force f,, in direction
M to the underformed cross section Aoy is found by differenciation o = OW/0Au. In
the case of uniaxial extension with A1=\, L2=Az=1"" this yields:
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With this equations the model parameters G¢, Ge and Te/ne can be found from fit-
tings to experimental stress-strain curves.
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3. Stress softening by stress-induced filler cluster breakdown

For an extension of Equs. (6) and (7) to filler reinforced rubbers we have to consider
hydrodynamic effects of filler particles and rigid filler clusters. The filler clusters re-
sult from an aggregation process in the rubber matrix subject to strong physical
bondings between filler particles. Possible aggregation mechanisms are percolation
or kinetical aggregation that both lead to a selfsimilar cluster structure [28]. We as-
sume that due to the stabilizing bound rubber layer at the cluster surface, the
strength of the filler clusters is quite high and hence, part of these clusters survive
up to large deformations. With increasing strain of a virgin sample, a stress-induced
successive breakdown of filler clusters takes place, during which the size of the
clusters decreases. This process is almost irreversible, because for quasi-static ex-
periments the gaps between broken filler clusters fill up with polymer that is ex-
pected to be strongly bonded to the filler surface and hence, hinders the reaggrega-
tion of the clusters when the stress relaxes during the backcycle of straining. It me-
ans that the cluster size that is reached at the maximum strain of the first cycle re-
maines fixed for a long time periode and almost no change of the cluster size takes
place during the following cycles as long as the maximum pre-strain is not excee-
ded. If a larger strain is applied in a following cycle, a further breakdown of the clu-
sters appears that is then frozen in the next cycles. This is the basic mechanism of
stress softening in filler reinforced rubbers. It leads to the characteristic stress-strain
behavior shown in Fig. 1, if the hydrodynamic reinforcement of the clusters is consi-
dered.

Hydrodynamic reinforcement can be described by a strain amplification factor X that
relates the microscopic intrinsic strain A = 1+go of the rubber to the macroscopic ex-
ternal strain A = 1+¢ of the sample (X = &o/e). As mentioned above, the use of a
strain amplification factor X appears appropriate for a modellization of the stress-
strain behavior of pre-strained reinforced rubbers if X is coupled to the previous
straining emax Of the sample. Then the stress-strain curves in the second or third cy-
cle can be described by a constant strain amplification factor Xmax=X(emax) that de-
pends on the pre-strain emax as long as the applied external strain ¢ is smaller than
emax. It means that Equs. (6) and (7) remain valid if the intrinsic strain A is expressed
by the external strain ¢ as follows:

}\.:1+Xmax8 f0r8<8max (8)
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If in a following cycle the sample is strained to a higher value &'max > emax, then the
filler clusters break further down and the hydrodynamical amplification factor Xmax =
X(e'max) that is representative for the next cycles decreases (Xmax < Xmax). In the fol-
lowing we will consider a quantitative model that describes the dependence Xmax =
X(emax) for selfsimilar filler clusters. It equals the dependence X=X(g) during the first
straing of the virgin sample and hence we can restrict to this case.

Hydrodynamic reinforcement by selfsimilar, rigid filler clusters was modellized on the
basis of a path integral formalism by Huber et al. [7], who found the following sca-
ling law for the hydrodynamic amplification factor in the case of high filler concentra-
tions ¢ with overlapping neighbouring clusters:

Jui
X =1+ const. %g O 9)

Here, & is the cluster size, ais the particle size, dtis the fractal dimension and dw the
anomalous diffusion exponent of the clusters. It shows that the strain amplification
factor increases with filler concentration and cluster size according to a power law
with an exponent that depends on the fractal structure of the clusters.

This result Equ. (9) can be combined with a concept of stress-induced cluster bre-
akdown. In a first approach one may assume an exponential decrease of the cluster
size with increasing strain:

&E) :E—°exp(—a(1+ £))+1 (10)

a a

The second summand ensures the right infinite strain limit € — o, where all clusters
are broken and the cluster size should equal the particle size. The exponent a in
this model is purely emprical and may depend on the strength of the clusters or the
elastic modulus of the rubber.

By inserting Equ. (10) into Equ. (9) we find a strain dependent amplification factor
X(e) that relates the external strain A= 1+¢ to the internal strain A of the polymer
chains. Then, instead of Equ. (8) with a constant hydrodynamic amplification factor
Xmax, relevant for pre-strained samples, the following equation results for non-
strained virgin sample:

A =1+ X(e)e=1+ X & + (X, —Dexp(-z(1+¢))e (11)
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The exponent z is given by z = o (dw - df) and abreviations for the zero and infinite
strain limits for the amplification factor X, and X,, are used:

w_df i
X, =1+ const. E%Og @ (12)

2

X, =1+const. (p3'_df (13)

The stress-strain behavior of filler reinforced virgin rubber samples is described by
Equs. (6) and (7) together with Equ. (11), while for pre-strained samples Equ. (8)
has to be applied. Then, the hydrodynamic amplification factor Xmax fulfills:

Xmax = Xo + (Xo-1) exp(-z(1+emax)) (24)
The difference between X(g¢) and Xmax corresponds to the pronounced stress sof-
tening of reinforced rubbers. It results from the almost irreversibly breakdown of filler
clusters during the first deformation cycle.

4. Results and discussion

Fig. 2 shows uniaxial stress-strain results of unfilled NR-samples at 100 °C that are
cross-linked with a variable amount of TMTD. The solid lines correspond to fittings
according to Equ. (7) that are in good agreement with the experimental data. The
dependence of estimated fitting parameters on TMTD-concentration is shown in Fig.
3. As expected from Equ. (2) and (3) the cross-link modulus G¢ increases with in-
creasing TMTD-concentration, while the topological constraint modulus approaches
a plateau value that is characteristic for the constant entanglement density of the
rubber, independent of cross-link density. The third parameter ne/Te decreases with
increasing TMTD-concentration that can be related to an increase of the trapping
factor Te with rising cross-link density. Hence, the behavior of the model parameters
for the unfilled NR-samples is well understood.

Fig. 4 shows the uniaxial stress-strain behavior of E-SBR-samples that are filled with
40 phr N339. Data for the virgin sample in first extension and for differently pre-
strained samples in second extension are shown. The cross-linking system is kept
fixed for all samples (1.8 phr sulfur, 1.2 phr CBS, 0.4 phr DPG). Beside the experi-
mental date, fitted curves are shown as solid lines for the pre-strained samples ac-
cording to Equs. (7) and (8). The fitting parameters for the rubber matrix G¢, Ge and
ne/Te are hold constant for the differently pre-strained (and virgin) samples (compare
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insert of Fig. 4). The impact of pre-straining is modellized by the amplification factor
Xmax. Obviously, the fittings for the pre-strained samples with only one variable pa-
rameter Xmax that considers the hydrodynamic reinforcement of differently frozen
filler cluster structures are fairly well.

The dependence of the fitting parameter Xmax On pre-strain emax is demonstrated in
Fig. 5, where according to Equ. (14) a half-logarithmic plot is chosen. The unknown
parameter X, that appears on the ordinate of Fig. 5 is obtained from a least square
fit to Equ. (14). We note that, due to the physical meaning, all X-parameters must be
larger than one. This condition is fulfilled for the fitted value X, = 1.35 and X, = 12.9
that is obtained from the axis intersection of the regressin line. Furthermore, the ex-
ponent z = 0.56 is found from the slope. With these three parameters that describe
the hydrodynamic reinforcement of successively broken filler clusters with increasing
strain, a simulation of the first extension of the virgin sample is obtained if Equ. (7) is
applied together with Equ. (11). This is shown as dashed line in Fig. 4 and confirms
the developed micro-mechanical concept of stress-softening.
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Fig. 2: Stress-strain data and fittings (solid
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Fig. 4: Stress-strain data and fittings (solid
lines) of E-SBR samples filled with 40 phr
N339 in the first (o) and second (+) extension
at different pre-strains ¢,,,. Dashed line:
Prediction of Equs. (7) and (11) with
parameters from Fig. 5.
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X, = 1.35 is estimated from the
condition of minimum standard
deviation of the regression line that
yields X, = 12.9 and z = 0.56

(Equ.(14)).
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