Novel Approaches to the Analysis of Localised Stress Concentrations in Deformed Elastomers

John Mc Namara

PhD

Supervisors: Dr. Steve Jerrams

Dr. Thomas Alshuth

School of Manufacturing and Design Engineering

Dublin Institute of Technology

September 2011

Abstract

The research described here is concerned with improving finite element analysis (FEA) of rubber components subjected to dynamic loading, particularly in respect of accurate modelling of stress softening using standard software codes and phenomenological material models. The research required the design and implementation of a user subroutine capable of inclusion in standard highly nonlinear codes. Experimental methods were employed to corroborate the FEA simulations and so validate the subroutine. This was also achieved using 3D image correlation photogrammetry (ICP) and other novel experimental procedures. From this experimentation and modelling, the results for different rubber specimens and load cases were presented.

The primary aim of the research was to provide a novel method for modelling stress softening for localised stress concentration at discontinuities in rubber components and to implement optimised stress softening subroutines for rubber into commercial software codes. As a consequence other novel research is presented in respect of:

- i) A semi empirical formula for elastomer stress softening.
- ii) Recommendations for improving ICP techniques applied to rubber.
- iii) A determination of the likelihood of large flaws causing premature failures in rubber specimens.

Keywords: stress softening, elastomer, fatigue, stress concentration.

I certify that this thesis which I now submit for examination for the award of PhD, is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

This thesis was prepared according to the regulations for postgraduate study by research of the Dublin Institute of Technology and has not been submitted in whole or in part for an award in any other Institute or University.

The Institute has permission to keep, to lend or to copy this thesis in whole or in part, on condition that any such use of the material of the thesis be duly acknowledged.

Signature Date	
----------------	--

Candidate

Acknowledgements

There is a large number of people have assisted and supported me throughout this research to whom I am grateful. First and foremost, I would like to express my sincere gratitude to my supervisor Dr Steve Jerrams, who I am deeply indebted to, not only for his initial confidence in my engineering ability, but for his guidance, supervision and patience over the years. I'd like to extend my gratitude to Prof. Robert Schuster, for giving me the opportunity to work in DIK; it was a privilege and an invaluable learning experience. I also offer sincere thanks to Dr Thomas Alshuth for his introduction to the world of elastomers, and his dedication to the progression of research in the field. I would also like to thank John Lawlor and the School of Manufacturing Engineering at DIT.

I would like to thank all my friends and colleagues both at DIT and DIK, who helped along the way. In particular, I must thank Dr Frank Abraham, whose groundbreaking work I have had the opportunity to build upon and Peter Erren, for his technical assistance and friendship, along with Dr Stephen Ronan, and Dr Jens Meier and Felipe Hüls for their creative ideas on FEA. Finally, it gives me great pleasure to thank my parents, family and friends; without their encouragement and support this dissertation would not have reached completion. Above all, I wish to express my eternal gratitude to my wife, Katriona, for sticking with me through all the good times and bad, and for her patient love and support.

Abbreviations

3D	Three Dimensional
ACM	Acrylic Rubber
ASTM	American Standard for Testing of Materials
BS	British Standards
CCD	Charged Couple Device
CL	Chemiluminescence
СТ	Computed Tomography
DIK	Deutsches Institut für Kautschuktechnologie
DIN	Deutsches Institut für Normung
DMA	Dynamic Mechanical Analysis
DTMA	Dynamic Thermal Mechanical Analysis
EPDM	Ethylene-Propylene-Diene Polymer
FE	Finite Element
FEA	Finite Element Analysis
ICP	Image Correlation Photogrammetry
ISO	International Organization for Standardization
JASO	Japanese Automotive Standards Organisation
MTS	Material Testing System
NBR	Acrylonitrile-Butadiene Rubber
NR	Natural Rubber
RBE2	Rigid Body Element Type 2
RSA	Rheometrics Solids Analyser
SAE	Society of Automotive Engineers
SEN	Single Edge Notched
SLS	Standard Linear Solid
TEM	Transmission Electron Microscope
UV	Ultraviolet
WLF	Williams-Landel-Ferry
XLD	Crosslink Density

Nomenclature

C _{ij}	Mooney-Rivilin Coefficient
E	Young's modulus
E'	Elastic Storage modulus
Е"	Elastic Loss modulus
E*	Elastic Complex modulus
G'	Dynamic storage modulus in shear
G"	Dynamic loss modulus in shear
I_1	1 st Strain Invariant
I_2	2 nd Strain Invariant
Tan δ	Loss factor
3	Strain
σ	Stress
τ	Relaxation time
η	Viscosity
F	Force
K _{tu}	Notch sensitivity factor
$K_{t\theta}$	Notch sensitivity angle
phr	Parts per hundred rubber
t ₉₀	90% of time to complete curing
T_g	Glass transition temperature
λ	stretch or strain ratio
W	Strain energy density

Table of Contents

Abstract		ii
Acknowledge	ements	iv
Abbreviation	18	v
Nomenclatu	*0	vi
		•••••••••
Table of Con	itents	V11
List of Figur	es	X
List of Table	S	xiv
Chapter 1	Introduction	15
11	Motivation for the Research	15
1.1	Dynamic Properties at Discontinuities	13
1.2.1	The Influence of Discontinuities on Fatigue Life	
1.3	Aim and Objectives	
1.3.1	Secondary Aims	
1.4	Dissertation Structure	20
1.5	The dissertation structure	21
Chanter 2	Litoratura Roview	22
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2.1	Physical Behaviour of Rubber	
2.1.1	Hyperelasticity	23
2.1.2	Viscoelasticity	
2.1.3	Stress Soliening - Mullins Effect	
2.1.4	FEA of rubber like meterials	
2.2	I ocalised strain and notch sensitivity	
2.3	Physical testing techniques used in the research	
2.7	Thysical costing teeningues used in the research	
Chapter 3	Procedures, Methodologies and Design	
3.1	Physical Test Samples used in the Programme	38
3.1.1	S2 Uniaxial Test Specimen	
3.1.2	Dumbbell Samples	
3.1.3	Notched dumbbells	40
3.1.4	B1-axial tests	
3.1.5	Single Edge Notched (SEN)	
3.1.6	Single Edge Notched (SEN)	
3.1./ 2.1.9	Modified SEN with 90° vee Notch	
5.1.8 2.1.9	Pure snear (planar)	
3.1.0 2.2	Motorials and Equipment	
3.2	Test Parameters	۲+ ۱۹
3.4	Basic Testing	
3.5	Investigation of heat build-up	
3.6	Dynamic testing to failure of un-notched specimens	
3.7	Fatigue Testing of notched specimens	66
3.8	Low cycle dynamic testing employing photogrammetry	66

Chapter 7	Conclusion	141
Chapter 6	Discussion	137
5.0	icesuits of simulations of success solutining of notched dumbbell	134
5.5 5.6	Results of simulations of stress softening on notched dumbhall	131 127
5.4.2 DII 5.5	Calculation of the probability of the prosonon of flows	120
5 / 1 2	ninishing notch severity at higher deformations	122
J.H.I samples	The probability of naws occurring in crucal volumes in clasto	122
J. <del>4</del> 5 /1 1	The probability of flaws occurring in critical volumes in electo	122 mer
5.5 5.4	Influence of notch geometry	177
5.2	Results of notched dumbball tests	110
J.I 5 2	Degults of fatigue tasts on plain dymbhalls	110
51	Overview	110
Chapter 5	Results of fatigue tests and simulations	110
with a ce	ntrally located hole.	106
4.1.6	Experimental verification using the pure shear (planar) specim	en
test as an	example	102
4.1.5	Experimental verification using the pure shear (planar) specim	en
4.1.4	Using subroutines to vary material constants	99
elastome	ric deformation	98
4.1.3	The significance of strain invariant $I_2$ in multi-axial simulation	of
4.1.2.8	Notched dumbbell model	96
4.1.2.7	Dumbbell model 3D	95
4.1.2.6	Equi-Biaxial model	93
4.1.2.5	Uniaxial S2 model	92
4.1.2.4	Planar Specimen (Pure shear) with 35mm cut	90
4.1.2.3	Modified SEN with 6mm central hole	88
4.1.2.2	Planar specimen with 6mm centrally located hole	87
4.1.2.1	SEN specimen with "Sharp 5mm Crack"	85
	constraints	85
4.1.2	Finite element modelling requirements, element selection and	_
softening	ç	84
4.1.1	Progressive updating of FEA material constants to model stres	S
4.1	Modifying local constants to facilitate accurate FEA simulation	n 84
Chapter 4	varying material constants to assimilate stress softening	84
3.9.4	Modified SEN with 90°Vee Notch	
393	Modified SEN with central hole	70 79
3.9.1	Comparison of notched SFN tests with $FF \Delta$	/ / 78
3 0 1	Finite element analysis	70 77
3 8 10	Variation of initial crack length	/ <del>1</del> 76
389	Variation of the facet size and sten for SFN specimens	75
3.8.8	Tests on Single Edge Notched (SEN) Specimens	73
3.87	Accuracy	72
3.8.6	Measurement and Processing	71
3.8.5	Sample Preparation	70
3.8.4	Calibration	69
3.8.3	Illumination	68
3.8.2	Displacement determination.	68
3.8.1	Description and working principles	66

Chapter 8	Future Work	143
References		148
Appendices		155
Appendix 1 –	Short wave thermography specifications	156
Appendix 2 –	A list of published papers relevant to the research	157
Appendix 3 –	Indentor measurements using photogrammetry	160
Appendix 4 –	Modified SEN with central hole	164
Appendix 5 –	Modified SEN with 90°Vee notch	166
Appendix 6 –	Dynamic mechanical thermal analysis (DMTA)	168
Appendix 7 –	Double shear sandwich tests (DSST)	172
Appendix 8 – 	Fitting material models to experimental data in MSC MA	ARC 176